Plastics Portal South Africa

Uses of Plastics

Companies Listed

Uses of Plastics

Explaining the uses of plastics- to cover plastic raw materials, machinery, and processes: Companies may feel free to add information here please send info@plastixportal.co.za,

(companies are invited to offer explanations of plastic terms in all categories - not yet explained here)

Commodity Plastics
HDPE
LDPE
LLDPE
PP
Organoleptic Polymers
Plastomers

USES: Bottles (up to 25 ltr), Sheet, Geomembranes, Injection moulded articles, Bags

Semi-Commodity Plastics
GPPS
HIPS
EPS(Expandable PS)
ABS
Metallozine

USES: Stationery Items & Pens, Medical Items & Petri-Dishes, Packaging

Stationery Items, Fridge Liners, Toys, Picture Frames, Cutlery, Packaging

Disposable Food Containers, Protective Packaging

Yoghurt Cups and Margarine Tubs, Appliances, Furniture Components, Automotive Components, Household Goods

Swimming Pool Parts, Appliance Components.

Engineering Plastics
PA6(Nylon 6 unfilled & glass filled
PMMA(Acrylic)
POM(Acetal)
PC(Polycarbonate)
SAN
PBT(unfilled and glass filled)
PET
TPE(Thermoplastic Elastomers)
Alloys(eg. PC/ABS)
PUR(Polyurethane)

Barrier Packaging, Fishing Line, Furniture Components, Automotive Components, Industrial Components, Industrial Appliance Components

Number Plates, Roof Sheeting, Promotional Items

Gears, Automotive Components

Roof Sheeting, Swimming Pool Components, Plugs, Protective Gear

Cosmetic Jars

Electrical Appliances, Castor Wheels

Still and Carbonated Drink Bottles

Airbag Covers, Over Moulded Grips, Gaskets, Medical Components, Sports Equipment

Automotive Components, Appliances


Ear Tags, Mining Screens, Conveyor Belts, Footwear

Speciality Polymers & Products
EVOH
Adhesive Polymer
Easy Peel Adhesive
Polymer Performance Enhancers
Metallozene Plastomers
Finished Films

Barrier Packaging in Cheese, Processed Meats, Medicine, Cosmetic Packaging

Tie Layer used in Barrier Packaging

Easy Peel Seal used in confectionary, yoghurt, condiments, etc , Packaging

Add to Polymers to increase strength, impact strength, cold temperature performance, chemical resistance, etc.

5 - Layer Barrier Films, PET Film, BOPP Film

Thermosets
PF(Phenolic)

Appliances, Cookware Handles, Toilet Seats, Industrial Components

Additives for Plastics
Titanium Dioxide
Pigments
Anti-fogging agents
Tackifiers
Processing Aids
1 Pack Stabilizers
Impact Modifiers

Colour Modifier

Waxes and Lubricants

PVC

PVC


Information Courtesy of Protea Polymers



Uses of Foam Products:
These materials include low density flexible foam used in upholstery and bedding, low density rigid foam used for thermal insulation, soft solid elastomers used for gel pads and print rollers, and hard solid plastics used as electronic instrument bezels and structural parts. Polyurethanes are widely used in high resiliency flexible foam seating, rigid foam insulation panels, microcellular foam seals and gaskets, durable elastomeric wheels and tires, electrical potting compounds, high performance adhesives and sealants, Spandex fibers, seals, gaskets, carpet underlay, and hard plastic parts.

Production of Foams:
The main polyurethane producing reaction is between a diisocyanate (aromatic and aliphatic types are available) and a polyol, typically a polypropylene glycol or polyester polyol, in the presence of catalysts and materials for controlling the cell structure, (surfactants) in the case of foams. Polyurethane can be made in a variety of densities and hardnesses by varying the type of monomer(s) used and adding other substances to modify their characteristics, notably density, or enhance their performance. Other additives can be used to improve the fire performance, stability in difficult chemical environments and other properties of the polyurethane products. Though the properties of the polyurethane are determined mainly by the choice of polyol, the diisocyanate exerts some influence, and must be suited to the application. The cure rate is influenced by the functional group reactivity and the number of functional isocyanate groups. The mechanical properties are influenced by the functionality and the molecular shape. The choice of diisocyanate also affects the stability of the polyurethane upon exposure to light. Polyurethanes made with aromatic diisocyanates yellow with exposure to light, whereas those made with aliphatic diisocyanates are stable.[24] Softer, elastic, and more flexible polyurethanes result when linear difunctional polyethylene glycol segments, commonly called polyether polyols, are used to create the urethane links. This strategy is used to make spandex elastomeric fibers and soft rubber parts, as well as foam rubber. More rigid products result if polyfunctional polyols are used, as these create a three-dimensional cross-linked structure which, again, can be in the form of a low-density foam. An even more rigid foam can be made with the use of specialty trimerization catalysts which create cyclic structures within the foam matrix, giving a harder, more thermally stable structure, designated as polyisocyanurate foams. Such properties are desired in rigid foam products used in the construction sector. Careful control of viscoelastic properties — by modifying the catalysts and polyols used —can lead to memory foam, which is much softer at skin temperature than at room temperature. There are then two main foam variants: one in which most of the foam bubbles (cells) remain closed, and the gas(es) remains trapped, the other being systems which have mostly open cells, resulting after a critical stage in the foam-making process (if cells did not form, or became open too soon, foam would not be created). This is a vitally important process: if the flexible foams have closed cells, their softness is severely compromised, they become pneumatic in feel, rather than soft; so, generally speaking, flexible foams are required to be open-celled. The opposite is the case with most rigid foams. Here, retention of the cell gas is desired since this gas (especially the fluorocarbons referred to above) gives the foams their key characteristic: high thermal insulation performance. A third foam variant, called microcellular foam, yields the tough elastomeric materials typically experienced in the coverings of car steering wheels and other interior automotive components.
Information Courtesy of http://en.wikipedia.org

View AllPremium Advertisers
Cabletech MarketingPremier PackagingKraussMaffei Injection Moulding MachinesPMS PlasticsCompact Cool - Water ChillersCroda - Polymer AdditivesAstrapak - PackagingSuperior Blade and Grinding ServicesGranulator Blade ManNissei ASB - Injection Stretch Blow Moulding MachinesDynamic Plastics